Мой сайт
Вторник, 02.07.2024, 10:39
Приветствую Вас Гость | RSS
Главная | | Регистрация | Вход
Меню сайта

Наш опрос
Оцените мой сайт
Всего ответов: 7

Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0

Форма входа

Главная » 2014 » Январь » 7 » Все дыхательные гимнастики. Для здоровья тех, ком
00:29
 

Все дыхательные гимнастики. Для здоровья тех, ком

Человек не должен верить в то, чего не в состоянии постичь!
Абд-ру-шин «В свете истины»

Великий советский биолог Николай Владимирович Тимофеев-Ресовский (1900–1981) говорил своим ученикам: «То, что вы видите, является рядом феноменов – вот их вы можете описать, а механизмы действия – это плод вашего ума». Давайте последуем советам великих и пойдем именно этим путем – сначала опишем те феномены дыхания, существование которых не вызывает сомнений у современной науки. В силу своей объективности эти данные не имеют никакой «идеологической» заинтересованности в пользу какой-либо из описываемых далее систем, что дает нам основания для более взвешенного выбора вида дыхательной гимнастики, методики тренировок. Описания различных видов дыхательных гимнастик вы найдете в следующей части книги, но в любом случае ваш выбор должен основываться не только на вашем желании, ведь для подбора оздоровительной методики предварительно нужно объективно оценить:
цели, которые вы ставите перед собой, начиная выполнять те или иные дыхательные упражнения (улучшение здоровья или его сохранение; борьба с болезнями, психофизиологические или духовные цели и т. д.);
состояние вашего здоровья и возможности вашего организма (наличие хронических или острых заболеваний в стадии компенсации или обострения, возраст, индивидуальные особенности организма);
образ жизни (крупный мегаполис или сельская местность, время, которое вы можете посвятить занятиям, темп жизни и т. д.).
Учет целей, задач и возможностей необходим при планировании любых своих действий – от объявления войны до посещения супермаркета – и уж особенно при обращении к собственному здоровью.
С точки зрения современной науки о жизнедеятельности целостного организма – физиологии —дыхание – это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение углекислого газа.
Поступление кислорода из атмосферы к клеткам нужно для биологического окисления органических веществ, в результате которого освобождается энергия, необходимая для жизни организма. В процессе биологического окисления образуется углекислый газ, избыток которого удаляется из организма. Прекращение дыхания ведет к гибели прежде всего нервных, а затем и других клеток организма. Кроме того, дыхание участвует в поддержании постоянства реакции жидкостей и тканей внутренней среды организма, а также температуры тела.
Физиологические процессы, которые мы будем рассматривать в этой части, в совокупности представляют собой то, что обычно мы называем дыханием.
Легко представить себе, как человек вдыхает воздух. Попадая в легкие, воздух отдает кислород и забирает из крови избыточный углекислый газ. Обогащенная кислородом кровь движется ко всем клеткам тела, где происходит обратный процесс – кровь отдает клеткам кислород и забирает углекислый газ. Клетки усваивают кислород и в результате уже молекулярных процессов используют его для поддержания собственной жизнедеятельности. Другими словами, дыхание человека включает такие последовательные процессы:
1) внешнее дыхание (вентиляция легких);
2) обмен газов в легких (между воздухом, находящимся в легких, и кровью капилляров малого круга кровообращения);
3) транспорт газов кровью;
4) обмен газов в тканях между кровью капилляров большого круга кровообращения и клетками человеческого тела;
5) клеточное дыхание (биологическое окисление в митохондриях клеток).
Именно в таком порядке мы и будем их рассматривать. Следует заранее предупредить, что, разбираясь с дыхательными процессами, нам придется поговорить о достаточно сложных вещах, но автор обещает приложить все старание, чтобы сделать этот процесс, насколько это возможно, более увлекательным. Обойтись без сложных материй, к сожалению, не удастся, иначе будет трудно понять, почему появились технологии оздоровления, основанные на выполнении дыхательных упражнений.

Внешнее дыхание, или вентиляция легких, – самый заметный процесс в цепи процессов дыхания. Чаще всего именно его описанием и удовлетворяются авторы пособий по дыхательным гимнастикам, упуская из виду то, для чего служит этот процесс и какие функции он должен выполнять. Но, отрывая этот процесс от последующих этапов «путешествия» кислорода и углекислого газа в организме, мы рискуем упустить очень важные моменты, поэтому постарайтесь прочитать эту главу как можно более внимательно и вдумчиво – приведенная в ней информация будет использована при описании различных дыхательных гимнастик, на одной из которых вы остановите свой выбор.
Чаще всего именно описанием внешнего дыхания и удовлетворяются авторы пособий по дыхательным гимнастикам, упуская из виду то, для чего служит этот процесс и какие функции он должен выполнять.
Легкие представляют собой пористый орган, отдаленно напоминающий по своему строению скопление отдельных пузырьков или виноградную гроздь с огромным количеством ягод. Каждая «ягода» – это легочная альвеола (легочный пузырек), в которой происходит выполнение основной функции легких – газообмен. Между воздухом альвеол и кровью находится так называемый воздушнокровяной барьер, образованный стенками альвеолы и кровеносного капилляра. Именно через этот барьер в кровь поступает кислород и удаляется углекислый газ.
Рис. 1. Строение воздушно-кровяного барьера:
1 – просвет альвеол; 2 – сурфактант; 3 – альвеолоцит; 4 – эндотелиоцит; 5 – просвет капилляра; 6 – эритроцит в просвете капилляра. Стрелками показан путь кислорода и углекислого газа через аэрогематический барьер (между кровью и воздухом)

Воздух к альвеолам поступает по воздухоносным путям – бронхам и более мелким бронхиолам — которые переходят в альвеолярные ходы. Ветвление бронхов и бронхиол формирует доли (правое легкое имеет 3 доли – верхнюю, среднюю и нижнюю; левое – 2 доли – нижнюю и верхнюю). Доли легкого разделяются на сегменты – по 10 сегментов в каждой доле. Сегменты, в свою очередь, делятся на дольки – их около 80 в каждом сегменте. В обоих легких 600–700 млн. альвеол, дыхательная поверхность которых составляет от 40 м2 при выдохе до 120 м2 при вдохе.
Бронхи, как и трахея, имеют стенки с хрящевым основанием и поэтому достаточно жестки. Бронхиолы и альвеолы имеют мягкие стенки и поэтому могут спадаться, т. е. слипаться, как спущенный воздушный шарик, если в них не поддерживается некое давление воздуха.
Рис. 2. Правое и левое легкие:
1 – правое легкое; 2 – верхушка легкого; 3 – гортань; 4 – трахея; 5 – левое легкое; 6 – верхняя доля; 7 – главный бронх левого легкого; 8 – нижняя доля; 9 – нижний край; 10 – сердечная вырезка; 11 – медиальный край правого легкого; 12 – нижняя доля; 13 – косая щель; 14 – средняя доля; 15 – горизонтальная щель; 16 – верхняя доля правого легкого

Чтобы такого слипания не произошло, легкие как единый орган со всех сторон покрыты плеврой – прочной герметичной оболочкой. Плевра имеет два слоя – два листка. Один листок плотно прилежит к внутренней поверхности жесткой грудной клетки, другой окружает легкие. Между ними находится плевральная полость, в которой поддерживается отрицательное давление, благодаря этому легкие находятся в расправленном состоянии.
Жесткий каркас грудной клетки составляют ребра, которые гибко (благодаря хрящам и суставам) присоединены к позвоночнику и суставам. Когда человек делает вдох и выдох, грудная клетка увеличивается и уменьшается в объеме, сохраняя при этом жесткость, необходимую для предохранения находящихся в грудной полости органов.
Рис. 3. Грудная клетка: 1 – тело грудины; 2 – рукоятка грудины; 3 – верхняя апертура грудной клетки; 4 – ключица; 5 – лопатка; 6 – ребра; 7 – мечевидный отросток грудины; 8 – реберная дуга

Все начинается с вдоха…
Для того чтобы вдохнуть воздух, человеку необходимо создать в легких давление более низкое, чем атмосферное. Чтобы выдохнуть – более высокое. Реально процесс вдоха-выдоха сводится к тому, что вдох обеспечивается увеличением объема грудной клетки, а выдох – его уменьшением. На первый взгляд, все просто. Но на самом деле, большая часть усилий, затрачиваемых при дыхании, расходуется на вдох – в обычных условиях выдох осуществляется автоматически, за счет упругости легких и силы тяжести.

Усилие вдоха создают дыхательные мышцы вдоха (инспираторные мышцы). Знания об этих мышцах нам понадобятся чуть позже – когда мы будем рассматривать подготовку мышц тела к дыхательным упражнениям, поэтому постарайтесь запомнить информацию, которая приведена ниже.
Основной мышцей вдоха является диафрагма — мышечно-сухожильная перегородка между полостью грудной клетки и брюшной полостью.
В результате сокращения мышечных волокон наружных частей диафрагмы верхняя ее часть, включающая сухожильный центр, смещается вниз, при этом несжимаемые органы брюшной полости оттесняются вниз и в стороны, растягивая стенки брюшной полости. При спокойном вдохе купол диафрагмы опускается приблизительно на 1,5 см, соответственно увеличивается высота грудной полости. При этом нижние ребра слегка расходятся, увеличивая и обхват грудной клетки, что особенно заметно в нижних отделах.
Основной мышцей вдоха является диафрагма – мышечно-сухожильная перегородка между полостью грудной клетки и брюшной полостью.
Кроме диафрагмы, в процессе увеличения объема грудной клетки также принимают участие наружные косые межреберные и межхрящевые мышцы. Благодаря наклонному направлению волокон в этих мышцах нижние ребра более подвижны, чем верхние. Поэтому момент силы, определяющий движение рычагов, оказывается большим для нижних ребер (или хрящей, которыми они крепятся к грудине и позвоночнику) – из-за этого нижнее ребро как бы «тянется» за верхним. В результате подъема ребер значительно увеличивается объем грудной клетки.
При очень глубоком и интенсивном дыхании или при повышении сопротивления вдоху в процесс увеличения объема грудной клетки включается ряд вспомогательных дыхательных мышц, которые могут поднимать ребра: лестничные, большая и малая грудные, передняя зубчатая. К вспомогательным мышцам вдоха относятся также мышцы, разгибающие грудной отдел позвоночника и фиксирующие плечевой пояс при опоре на отведенные назад руки (трапециевидная, ромбовидные и др.).
Рис. 4. Изменения объема грудной клетки и положения диафрагмы при спокойном вдохе (изображены контуры грудной клетки и диафрагмы, сплошные линии – выдох, пунктирные – вдох)

При очень глубоком и интенсивном дыхании или при повышении сопротивления вдоху в процесс увеличения объема грудной клетки включается ряд вспомогательных дыхательных мышц, которые могут поднимать ребра: лестничные, большая и малая грудные, передняя зубчатая. К вспомогательным мышцам вдоха относятся также мышцы, разгибающие грудной отдел позвоночника и фиксирующие плечевой пояс при опоре на отведенные назад руки (трапециевидная, ромбовидные и др.).
Как мы уже говорили, спокойный вдох протекает пассивно – на фоне практически расслабленных мышц. При активном интенсивном выдохе «подключаются» мышцы брюшной стенки {косые, поперечная и прямая), в результате чего объем брюшной полости уменьшается, в ней повышается давление, давление передается на диафрагму и поднимает ее. Вследствие сокращения внутренних косых межреберных мышц происходит опускание ребер и сближение их концов. К вспомогательным мышцам выдоха относятся также мышцы, сгибающие позвоночник.
Рис. 5. Мышцы, принимающие участие в акте дыхания:
а: 1 – трапециевидная мышца; 2 – ременная мышца головы; 3 – большая и малая ромбовидная мышцы; 4 – нижняя задняя зубчатая мышца; 5 – пояснично-грудная фасция; 6 – поясничный треугольник; 7 – широчайшая мышца спины
б: 1 – большая грудная мышца; 2 – подмышечная полость; 3 – широчайшая мышца спины; 4 – передняя зубчатая мышца; 5 – наружная косая мышца живота; 6 – апоневроз наружной косой мышцы живота; 7 – пупочное кольцо; 8 – белая линия живота; 9 – паховая связка; 10 – поверхностное паховое кольцо; 11 – семенной канатик

Как вам уже известно, легкие и внутренние стенки грудной полости покрыты серозной оболочкой – плеврой.
Между листками висцеральной и париетальной плевры имеется узкая (5-10 мкм) щель, в которой находится серозная жидкость, по составу сходная с лимфой. Благодаря этому легкие постоянно сохраняют объем, находятся в расправленном состоянии.
Если в плевральную щель ввести иглу, соединенную с манометром, полученные данные покажут, что давление в ней ниже атмосферного. Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшиться в объеме.
Эластическая тяга легких обусловлена тремя факторами:
1. Упругостью ткани стенок альвеол вследствие наличия в них эластичных волокон.
2. Тонусом бронхиальных мышц.
3. Поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.
В плевральной щели в обычных условиях не бывает газов, при введении в плевральную щель некоторого количества воздуха он постепенно рассасывается. Если в плевральную щель попадает небольшое количество воздуха, образуется пневмоторакс– легкое частично спадается, но вентиляция его продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается в кровь и легкое расправляется.
Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшиться в объеме.
При вскрытии грудной клетки, например при ранениях или внутригрудных операциях, давление вокруг легкого становится таким же, как атмосферное, и легкое спадается полностью. Его вентиляция прекращается, несмотря на работу дыхательных мышц. Такой пневмоторакс называется открытым. Двусторонний открытый пневмоторакс, если не оказать больному экстренную помощь, приводит к смерти. Необходимо либо срочно начать производить некусственное дыхание ритмическим нагнетанием воздуха в легкие через трахею, либо оперативно герметизировать плевральную полость.

Физиологическое описание нормальных дыхательных движений, как правило, не соответствует движениям, которые мы наблюдаем у себя и своих знакомых. Мы можем увидеть как дыхание, обеспечиваемое в основном диафрагмой, так и дыхание, обеспечиваемое в основном работой межреберных мышц. И тот, и другой вид дыхания – в пределах нормы. Подключение мышц плечевого пояса чаще происходит при серьезных заболеваниях или очень интенсивной работе и почти никогда не наблюдается в нормальном состоянии, у относительно здоровых людей.
Дыхание, обеспечиваемое в основном за счет работы диафрагмы, более характерно для мужчин. В норме вдох сопровождается незначительным выпячиванием брюшной стенки, выдох – незначительным ее втягиванием. Это брюшной тип дыхания в чистом варианте.
Реже, но все же достаточно часто, встречается парадоксальный, или обратный, тип брюшного дыхания, при котором брюшная стенка на вдохе втягивается, а на выдохе выпячивается. Этот тип дыхания обеспечивается исключительно за счет сокращения диафрагмы, без смещения органов брюшной полости. Этот вид дыхания также чаще встречается у мужчин.
Для женщин характерен грудной тип дыхания, обеспечиваемый в основном за счет работы межреберных мышц. Такая особенность может быть связана с биологической готовностью женщины к материнству и, как следствие, с затрудненностью брюшного дыхания при беременности. При этом типе дыхания наиболее заметные движения совершают грудина и ребра.
Дыхание, в котором задействованы плечи и ключицы, обеспечивается за счет работы мышц плечевого пояса. Вентиляция легких при этом типе дыхания слабая, воздух поступает только в их верхнюю часть, поэтому такой тип дыхания называется верхушечным. У здоровых людей верхушечный тип дыхания практически не встречается, он развивается при серьезных заболевания (не только болезнях легких!), но для нас этот тип важен, так как используется во многих дыхательных гимнастиках.

Понятно, что объем вдоха и выдоха может быть выражен в цифровых показателях. И в этом вопросе тоже есть несколько интересных, но малоизвестных фактов, знание которых необходимо для выбора того или иного вида дыхательной гимнастики.
При спокойном дыхании человек вдыхает и выдыхает около 500 мл (от 300 до 800 мл) воздуха; этот объем воздуха называется дыхательным объемом. Кроме обычного дыхательного объема при максимально глубоком вдохе человек может вдохнуть около 3 000 мл воздуха – это резервный объем вдоха. После обычного спокойного выдоха любой здоровый человек напряжением мышц выдоха способен «выдавить» из легких еще около 1 300 мл воздуха – это резервный объем выдоха. Сумма указанных объемов составляет жизненную емкость легких: 500 мл + 3 000 мл + 1 300 мл = 4 800 мл.
Как видно из расчетов, природа предусмотрела почти десятикратный запас по возможности «прокачивать» воздух через легкие. Сразу заметим – функциональный запас по «прокачиванию» воздуха (вентиляции легких) не совпадает с запасом по возможности потребления и транспорта кислорода.
Дыхательный объем количественное выражение глубины дыхания.
Жизненная емкость легких – это максимальный объем воздуха, который может быть введен или выведен из легких в течение одного вдоха или выдоха. Жизненная емкость легких у мужчин выше (4 000-5 500 мл), чем у женщин (3 000-4 500 мл), она больше в положении стоя, чем в положении сидя или лежа. Физические тренировки способствуют увеличению жизненной емкости легких.
После максимального глубокого выдоха в легких остается довольно значительный объем воздуха – около 1 200 мл. Это остаточный объем воздуха. Большая его часть может быть удалена из легких только при открытом пневмотораксе. В спавшихся легких также остается некоторое количество воздуха (минимальный объем), оно задерживается в «воздушных ловушках», образующихся потому, что часть бронхиол спадается раньше альвеол.
Рис. 6. Спирограмма – запись изменения легочных объемов

Максимальное количество воздуха, которое может находиться в легких, называется общей емкостью легких; оно равно сумме остаточного объема и жизненной емкости легких (в приведенном примере: 1 200 мл + 4 800 мл = 6 000 мл).
Объем воздуха, находящегося в легких в конце спокойного выдоха (при расслабленной дыхательной мускулатуре), называется функциональной остаточной емкостью легких. Она равна сумме остаточного объема и резервного объема выдоха (в использованном примере: 1 200 мл + 1 300 мл = 2 500 мл). Функциональная остаточная емкость легких близка к объему альвеолярного воздуха перед началом вдоха.
Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Обычно измеряют минутный объем дыхания. При спокойном дыхании в минуту через легкие проходит 6–9 л воздуха. Вентиляция легких зависит от глубины и частоты дыхания, в состоянии покоя это, как правило, от 12 до 18 вдохов в минуту. Минутный объем дыхания равен произведению дыхательного объема на частоту дыхания.

Воздух находится не только в альвеолах, но и в воздухоносных путях. К ним относятся полость носа (или рта при ротовом дыхании), носоглотка, гортань, трахея, бронхи. Воздух, находящийся в воздухоносных путях (за исключением дыхательных бронхиол), не участвует в газообмене, поэтому просвет воздухоносных путей называют анатомическим мертвым пространством. При вдохе последние порции воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе.
Объем анатомического мертвого пространства около 150 мл (примерно 1/3 дыхательного объема при спокойном дыхании). Значит, из 500 мл вдыхаемого воздуха в альвеолы поступает лишь 350 мл. В альвеолах в конце спокойного выдоха находится около 2 500 мл воздуха, поэтому при каждом спокойном вдохе обновляется лишь >/7 часть альвеолярного объема воздуха.

В понятие воздухоносные пути мы включаем носовую и ротовую полость, носоглотку, гортань, трахею и бронхи. В воздухоносных путях газообмен практически не производится, однако они необходимы для нормального дыхания. Проходя через них, вдыхаемый воздух претерпевает следующие изменения:
увлажняется;
согревается;
очищается от пыли и микроорганизмов.
С точки зрения современной науки наиболее физиологичным считается дыхание через нос: при таком дыхании очистка воздуха от пыли особенно эффективна – проходя через узкие и сложные по форме носовые ходы, воздух образует вихревые потоки, способствующие соприкосновению пылевых частиц со слизистой оболочкой носа. Стенки воздухоносных путей покрыты слизью, к которой прилипают содержащиеся в воздухе частицы. Слизь постепенно перемещается (7-19 мм/мин) по направлению к носоглотке за счет деятельности мерцательного эпителия полости носа, трахеи и бронхов. В слизи содержится вещество лизоцим, оказывающее смертоносное воздействие на болезнетворные микроорганизмы. При раздражении частицами пыли и накопившейся слизью рецепторов глотки, гортани и трахеи человек кашляет, а при раздражении рецепторов полости носа – чихает. Это защитные дыхательные рефлексы.
При раздражении частицами пыли и накопившейся слизью рецепторов глотки, гортани и трахеи человек кашляет, а при раздражении рецепторов полости носа – чихает. Это защитные дыхательные рефлексы.
Кроме того, вдыхаемый воздух, проходя через обонятельную зону слизистой оболочки носа, «приносит» запахи – в том числе и предупреждающие об опасности, вызывающие половое возбуждение (феромоны), запахи свежести и природы, возбуждающие дыхательный центр и оказывающие влияние на настроение.
На количество вдыхаемого воздуха и эффективность вентиляции легких влияет еще и такая величина как просвет (диаметр) бронхов. Эта величина может изменяться под действием многих факторов, часть из которых поддается контролю. Гладкая кольцевая мускулатура стенки бронхов суживает просвет. Мышцы бронхов находятся в состоянии тонической активности, возрастающей при выдохе. Мышцы бронхов сокращаются при увеличении парасимпатических влияний вегетативной нервной системы, под действием таких веществ как гистамин, серотонин, простагландины. Расслабление бронхов происходит при уменьшении симпатических влияний вегетативной нервной системы, под действием адреналина.
Частично перекрывать просвет бронхов может избыточное выделение слизи, возникающее при воспалительных и аллергических реакциях, а также инородные тела, гной при инфекционных заболеваниях и т. д. – все это, несомненно, будет отражаться на эффективности газообмена.
Предыдущий этап – этап внешнего дыхания – заканчивается на том, что кислород в составе атмосферного воздуха поступает в альвеолы, откуда он должен будет перейти в капилляры, «опутывающие» альвеолы густой сетью.
Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее, в левое предсердие. Из левого предсердия обогащенная кислородом кровь поступает в левый желудочек, а затем «отправляется в путешествие» по большому кругу кровообращения, к органам и тканям. «Обменявшись» с тканями питательными веществами, отдав кислород и забрав углекислый газ, кровь по венам поступает в правое предсердие, и большой круг кровообращения замыкается, начинается малый круг.
Малый круг кровообращения начинается в правом желудочке, откуда легочная артерия, разветвляясь и опутывая альвеолы капиллярной сетью, несет кровь на «зарядку» кислородом в легкие, а затем снова – по легочным венам в левое предсердие и так до бесконечности. Чтобы оценить эффективность и масштаб этого процесса, представьте, что время полного оборота крови составляет всего 20–23 секунды – весь объем крови успевает полностью «обежать» и большой, и малый круги кровообращения.
Рис 7. Схема малого и большого кругов кровообращения

Чтобы насытить кислородом столь активно меняющуюся среду, как кровь, необходимо учитывать следующие факторы:
количество кислорода и углекислого газа во вдыхаемом воздухе – т. е. его состав;
эффективность вентиляции альвеол – т. е. площадь соприкосновения, на которой происходит обмен газами между кровью и воздухом;
эффективность альвеолярного газообмена — т. е. эффективность веществ и структур, обеспечивающих соприкосновение крови и газообмен.
В обычных условиях человек дышит атмосферным воздухом, имеющим относительно постоянный состав (табл. 1). В выдыхаемом воздухе всегда меньше кислорода и больше углекислого газа. Меньше всего кислорода и больше всего углекислого газа в альвеолярном воздухе. Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний является смесью воздуха мертвого пространства и альвеолярного воздуха.

Таблица 1. Состав воздуха (в объемных %)
Альвеолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав артериальной крови. Регуляторные механизмы поддерживают постоянство состава альвеолярного воздуха. При спокойном дыхании состав альвеолярного воздуха мало зависит от фаз вдоха и выдоха. Например, содержание углекислого газа в конце вдоха всего на 0,2–0,3 % меньше, чем в конце выдоха, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха. Кроме того, газообмен в легких протекает непрерывно, независимо от фаз вдоха или выдоха, что способствует выравниванию состава альвеолярного воздуха. При глубоком дыхании, из-за нарастания скорости вентиляции легких, зависимость состава альвеолярного воздуха от вдоха и выдоха увеличивается. При этом надо помнить, что концентрация газов «на оси» воздушного потока и на его «обочине» тоже будет различаться – движение воздуха «по оси» будет быстрее, а его состав будет приближаться к составу атмосферного воздуха. В верхней части легких альвеолы вентилируются менее эффективно, чем в нижних отделах, прилежащих к диафрагме.
Газообмен между воздухом и кровью осуществляется в альвеолах, все остальные части легких служат только для «доставки» воздуха к этому месту, поэтому важна не общая величина вентиляции легких, а именно величина вентиляции альвеол. Она меньше вентиляции легких на величину вентиляции мертвого пространства.
Эффективность вентиляции альвеол (а следовательно, и газообмена) выше при более редком дыхании, чем при более частом.
Так, при минутном объеме дыхания, равном 8 000 мл, и частоте дыхания 16 раз в минуту вентиляция мертвого пространства составит
150 мл 16 = 2400 мл.
Вентиляция альвеол будет равна
8 000 мл – 2 400 мл = 5 600 мл.
При минутном объеме дыхания 8 000 мл и частоте дыхания 32 раза в минуту вентиляция мертвого пространства составит
150 мл 32 = 4 800 мл,
а вентиляция альвеол
8 000 мл – 4 800 мл = 3 200 мл,
т. е. будет вдвое меньшей, чем в первом случае. Отсюда следует первый из практических выводов: эффективность вентиляции альвеол (а следовательно, и газообмена) выше при более редком дыхании, чем при более частом.
Величина вентиляции легких регулируется организмом таким образом, чтобы газовый состав альвеолярного воздуха был постоянным. Так, при повышении концентрации углекислого газа в альвеолярном воздухе минутный объем дыхания увеличивается, при снижении – уменьшается. Однако регуляторные механизмы этого процесса находятся, к сожалению, не в альвеолах. Глубина и частота дыхания регулируются дыхательным центром на основании информации о количестве кислорода и углекислого газа в крови. О том, как это происходит, мы более подробно поговорим в разделе «Бессознательная регуляция дыхания».
Газообмен в легких осуществляется посредством диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности давления этих газов в альвеолярном воздухе и в крови.
Рис. 8. Альвеолярное дыхание

Диффузия (от лат. diffusio – распространение, растекание) – взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении снижения концентрации вещества и ведет к равномерному распределению вещества по всему занимаемому им объему. Так, пониженная концентрация кислорода в крови ведет к его проникновению через мембрану воздушно-кровяного {аэро-гематического) барьера, избыточная концентрация углекислого газа в крови ведет к его выделению в альвеолярный воздух. Анатомически воздушно-кровяной барьер представлен легочной мембраной, которая, в свою очередь, состоит из эндотелиальных клеток капилляров, двух основных мембран, плоского альвеолярного эпителия, слоя сурфактанта. Толщина легочной мембраны всего 0,4–1,5 мкм.
Поступивший в кровь кислород и «принесенный» кровью углекислый газ могут находиться как в растворенном, так и в химически связанном виде – в виде непрочного соединения с гемоглобином эритроцитов. Эффективность транспорта газов эритроцитами напрямую связана с этим свойством гемоглобина, более подробно этот процесс будет рассмотрен в следующей главе.

«Переносчиком» кислорода от легких к тканям и органам и углекислого газа от тканей и органов к легким является кровь. В свободном (растворенном) состоянии переносится настолько малое количество газов, что им можно смело пренебречь при оценке потребностей организма. Для простоты объяснения в дальнейшем будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.

Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин — это комплекс гемоглобина и молекулярного кислорода.
Гемоглобин содержится в красных кровяных тельцах – эритроцитах. Эритроциты под микроскопом похожи на слегка приплюснутый бублик, дырку в котором забыли проткнуть до конца. Такая необычная форма позволяет эритроцитам лучше, чем шарообразным клеткам, взаимодействовать с кровью (за счет большей площади), ведь как известно, из тел, имеющих равный объем, шар имеет наименьшую площадь. Кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр, добираясь в самые отдаленные «уголки» организма.
В 100 мл крови при нормальной температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика – время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол (при соответствующих вентиляции и кровоснабжении) практически весь гемоглобин крови превращается в оксигемоглобин. Скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов, из чего можно сделать второй практический вывод: чтобы газообмен шел успешно, воздух должен «получать паузы», время, за которое успеет выровняться концентрация газов в альвеолярном воздухе и притекающей крови.
Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) напрямую зависит от содержания растворенного кислорода в жидкой части плазмы крови, причем механизмы усвоения растворенного кислорода весьма эффективны и стабильны.
Чтобы газообмен шел успешно, воздух должен «получать паузы», время, за которое успеет выровняться концентрация газов в альвеолярном воздухе и притекающей крови.
Например, подъем на высоту 2 000 м над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе – с 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3 % – несмотря на снижение атмосферного давления, ткани продолжают снабжаться кислородом.
В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. И наоборот: в тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина «не отдает» молекулярный кислород – уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в активное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.
Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении в крови концентрации углекислого газа и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.
Таким образом, становится понятно, как взаимосвязаны и сбалансированы друг относительно друга природные процессы. Изменение способности оксигемоглобина удерживать кислород имеет огромное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет течение обменных процессов и облегчает «отдачу» гемоглобином кислорода.
В волокнах скелетных мышц содержится «родственный» гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он не отдает ее обратно в кровь.

Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Кислородная емкость крови зависит от содержания в ней гемоглобина.
В артериальной крови содержание кислорода лишь немного (на 3–4 %) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180–200 мл кислорода. Даже в случае, когда в экспериментальных условиях человек дышит чистым кислородом, количество кислорода в артериальной крови практически соответствует кислородной емкости. По сравнению с показателями, когда человек дышит обычным атмосферным воздухом, количество переносимого кислорода увеличивается мало (на 3–4%).
Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, проходя через капилляры, кровь отдает не весь кислород.
Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода. Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100, например:
(200 – 120): 200 100 = 40 %.
Коэффициент утилизации кислорода организмом, когда он находится в состоянии покоя, колеблется от 30 до 40 %. При интенсивной мышечной работе он повышается до 50–60 %.

Углекислый газ транспортируется кровью в трех формах. В венозной крови содержится около 58 объемных процентов (580 мл/л) CO2, причем из них лишь около 2,5 объемных процентов находятся в растворенном состоянии. Некоторая часть молекул CO2соединяется в эритроцитах с гемоглобином, образуя карбгемоглобин (около 4,5 объемных процента). Остальное количество CO2 химически связано и содержится в виде солей угольной кислоты (примерно 51 объемный процент).
Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и из них диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (CO2 + Н2O > Н2CO3).
Этот процесс катализируется (ускоряется) в двадцать тысяч (!) раз ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет, соответственно, процесс соединения углекислого газа с водой происходит только в эритроцитах. Но этот процесс обратим, т. е. он может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует и образование угольной кислоты, и расщепление ее на углекислый газ и воду (в капиллярах легких): CO2 + Н2O – Н2CO3.
Благодаря вышеописанным процессам связывания концентрация CO2 в эритроцитах невысока, поэтому все поступающие молекулы CO2 продолжают диффундировать внутрь эритроцитов. Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. В результате увеличивается количество воды во внутренней среде эритроцитов, поэтому их объем в капиллярах большого круга кровообращения несколько увеличивается.
Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу, поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем в оксигемоглобин. Кроме того, при превращении оксигемоглобина в гемоглобин увеличивается способность крови связывать двуокись углерода. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей – бикарбонатов.
Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин. В таком виде двуокись углерода переносится к легким.
В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется CO2. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н2O и CO2 – круг завершен.
Осталось сделать только одно примечание:
Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (CO2) и кислород, поэтому отравления угарным газом столь опасны: вступая в устойчивую связь с гемоглобином, угарный газ блокирует механизм нормального транспорта газов, фактически «душит» организм. Жители больших городов, особенно владельцы автомобилей, постоянно вдыхают воздух с повышенной концентрацией угарного газа, причем кондиционеры не снижают его количество. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения не способно выполнить транспортные функции. Как результат – обмороки, сердечные приступы и даже внезапные смерти относительно здоровых людей в условиях автомобильных пробок.

Наименьшая концентрация кислорода в тех внутренних средах организма, где его потребление максимально, – в митохондриях клеток, где кислород используется для процессов биологического окисления. Молекулы кислорода, освобождающиеся при прохождении по кровеносным капиллярам в результате диссоциации оксигемоглобина, движутся в направлении более низких величин концентрации кислорода. Концентрация кислорода в тканях зависит от многих факторов:
• скорости тока крови;
• просвета капилляров и расстояния между ними;
• расположения клеток по отношению к капиллярам;
• интенсивности окислительных процессов и т. д.
В тканевой жидкости, около капилляров, концентрация кислорода значительно ниже (20–40 мм рт. ст.), чем в крови. Особенно низка она в участках тканей, равноудаленных от соседних капилляров. При большой интенсивности окислительных процессов концентрация молекулярного кислорода в клетках может приближаться к нулю. Увеличение скорости кровотока резко повышает концентрацию кислорода в тканях. Например, увеличение скорости тока крови вдвое может повысить уровень содержания кислорода в нервной клетке на 10 мм рт. ст. Увеличению снабжения кислородом при интенсификации физиологических процессов способствует раскрытие резервных капилляров – тех капилляров, которые не используются при обычном режиме «работы» организма, наиболее масштабно этот процесс протекает в мышцах. Из всего вышесказанного можно сделать еще один – побочный, но очень важный практический вывод: физическая работа за счет открытия резервных капилляров способствует «вымыванию» шлаков и улучшению газообмена в тканях, именно физическая работа является наилучшим физиологическим (т. е. – естественным) стимулятором этих процессов.
Рис. 9. Тканевое дыхание

Наибольшая концентрация углекислого газа (до 60 мм рт. ст.) отмечается в клетках в результате образования этого газа в митохондриях. В тканевой жидкости концентрация углекислого газа изменчива (в среднем 46 мм рт. ст.), а в артериальной крови составляет 40 мм рт. ст. Углекислый газ из клеток и межклеточной жидкости диффундирует по направлению снижения концентрации в кровеносные капилляры и транспортируется кровью к легким. Этот механизм мы разбирали в предыдущей главе.
Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке досталось, как при коммунизме, – не по труду, а по потребностям.
Рис. 10. Митохондрия

Ни для кого не секрет, что наше тело состоит из множества живых клеток – непохожих по своему строению, но работающих с одной целью – обеспечить своим существованием жизнедеятельность цельного организма, являющегося материальной основой нашей Личности, который мы обычно называем телом. Однако, различаясь по своим функциям и строению, все клетки все же имеют общие черты – как люди, различающиеся как отдельные личности, но имеющие одинаковый набор внутренних органов (сердце, легкие, мозг и т. д.) и примерно одинаковый набор биологических потребностей (воздух, питание, тепло и т. д.). Эти закономерности в равной степени относятся как ко всему организму, так и к каждой его клетке, и в первую очередь любая клетка нашего тела нуждается в энергии. Эту энергию клетка получает путем окисления органических веществ, для процесса окисления необходим кислород – другими словами, клетка получает энергию в процессе клеточного дыхания. Но и здесь все совсем непросто.
Клеточное дыхание присуще всем организмам, живущим в содержащей кислород среде. Этот процесс лежит в основе обеспечения потребностей клетки в энергии. Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов. Такими «внешними ресурсами» для клетки могут быть поступающие из внешней среды химические вещества или даже солнечный свет для растительных клеток, содержащих хлорофилл Если говорить о потребностях живой клетки, то они складываются из различных процессов, каждый из который требует энергии для своего совершения. Сами эти процессы, в свою очередь, необходимы для совершения отдельных видов полезной работы для нужд как самой клетки, так и целостного организма. Даже у простейших живых существ, каковыми являются бактерии, таких процессов насчитывается несколько десятков, и все они нуждаются в энергетическом обеспечении. Что же в таком случае говорить о высокоспециализированных клетках человеческого тела – о нервных, железистых, мышечных клетках? Их «энергетические траты» значительно выше.
Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов.
Трудно себе представить, что Природа, стремящаяся к максимальной целесообразности действий любого организма, заложила для каждого из этих процессов отдельный механизм обеспечения энергией. Конечно, это не так. Как верно и точно заметил действительный член РАН В.П. Скулачев, «живая клетка располагает особой «энергетической валютой», играющей роль посредника между процессами запасания энергии и ее траты».
В течение достаточно долгого времени ученые считали, что единственным видом такой «валюты» служат так называемые высокоэнергетические химические соединения, – в первую очередь, известный даже школьникам аденозинтрифосфат (АТФ). Однако современные исследования опровергли эту догму. Оказалось, что клетка располагает не одним, а тремя типами «энергетической валюты». Наряду с АТФ такую роль выполняют водородный (протонный) и натриевый потенциалы на биологических мембранах.
На основе полученных данных учеными были сформулированы три закона биоэнергетики. Кратко их суть сводится к следующим положениям:

Живая клетка не использует внешние ресурсы для получения энергии, необходимой для обеспечения внутренних процессов, «напрямую». Клетка «конвертирует» энергию внешних ресурсов в одну из трех внутренних «энергетических валют»: АТФ, натриевый или протонный (водородный) потенциал, затем «валюта» расходуется на осуществление различных энергоемких процессов.
По еще одному меткому замечанию В.П. Скулачева, который дал подробное описание законов биоэнергетики, «клетка предпочитает денежное обращение, а не бартер». Простейшим примером запасания энергии в «конвертируемой» форме может быть гликолиз, или расщепление углеводов до молочной кислоты с получением молекулы АТФ. Если затем АТФ используется, например, для совершения механической работы (у животных для мышечного сокращения), цепь процессов завершается расщеплением АТФ до АДФ и фосфата сократительным белком мышечной клетки (актомиозином). Если источником энергии для мышечной работы служит не гликолиз, а дыхание (что энергетически более выгодно), то есть окисление кислородом питательных веществ (например, углеводов), результатом также будет получение АТФ, но путь к нему будет более сложным.

Живая клетка в результате эволюции приобрела способность использовать как минимум две «энергетические валюты»: водорастворимую (АТФ) и связанную с мембраной – натриевый или водородный потенциал.
Старая народная мудрость «не держи все яйца в одной корзине» находит подтверждение и на клеточном уровне. Если же использовать экономические выкладки и для дальнейших объяснений физиологических процессов, можно сказать, что клетка держит часть капитала в наличных деньгах, а часть в акциях, причем в двух разных банках.

«Энергетические валюты» клетки могут превращаться одна в другую, поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.
Вывод простой, сформулируем его с точки зрения «экономики клетки»: не важно, в какой «валюте» поступил доход. Главное, чтобы «валюта» была конвертируемая. Очень часто живая клетка располагает несколькими источниками энергии. Так, животные клетки могут использовать для энергообеспечения как дыхание, так и гликолиз – бескислородное извлечение энергии из органических веществ. Однако, как правило, даже в самых сложных случаях, какой-то один процесс доминирует в каждый конкретный момент времени и сменяется другим при изменении условий. В наиболее эволюционно «продвинутой» животной клетке есть все три вида «энергетической валюты», это увеличивает ее способность к выживанию и выполнению функций в организме.

Функции процесса клеточного дыхания достаточно разнообразны. В упрощенном виде они могут быть разделены на четыре группы:
1. Запасание «энергетической валюты» в конвертируемой форме (АТФ или протонного потенциала).
2. Выделение энергии в виде тепла.
3. Образование веществ, необходимых клетке для ее существования.
4. Удаление веществ, наличие которых во внутренней среде клетки нежелательно.

Если рассматривать процессы, происходящие в клетках, с позиций затраченных усилий и поглощенного кислорода, функция накопления «энергетической валюты» является, пожалуй, ведущей, основной функцией клеток. Поглощенный кислород используется для окисления субстратов дыхания (к примеру, глюкозы) в митохондриях клетки и получения на выходе этой реакции АТФ и протонный потенциал. Митохондрии в этом случае выступают и в роли «топок», и «энергогенераторов». Гидролиз АТФ в дальнейшем используется для различных целей – это своеобразная «наличность» клетки, которую она может использовать сразу или чуть позже, при возникновении потребности. Кислород для этого уже не нужен. Энергия гидролиза АТФ используется для обеспечения различных энергоемких процессов, таких как биосинтез веществ, мышечное сокращение и внутриклеточное движение, транспорт ионов через внешнюю мембрану клетки и т. д.
О солидных (в размерах целостного организма) масштабах этого процесса говорят весьма солидные цифры:
• митохондрии взрослого человека среднего роста и веса «перекачивают» через свои мембраны около 500 г ионов водорода в день, образуя протонный потенциал;
• за это же время в митохондриях производится около 40 кг (!) АТФ и такое же его количество утилизируется обратно в АДФ;
Сразу «бросающаяся в глаза» важность функции накопления «энергоносителей» и связанных с ней процессов формирует ошибочное представление, что роль дыхания в жизнедеятельности клетки исчерпывается участием кислорода в образовании АТФ. Однако существуют и другие функции клеточного дыхания. Наиболее очевидный пример – образование тепла в целях терморегуляции.

Практически вся энергия, которую производят клетки, в конечном итоге превращается в тепло. Расщепляются синтезированные ранее вещества, кровь нагревается за счет трения о стенки кровеносных сосудов, тепло образуется и в результате протекания внутриклеточных процессов, сопряженных с расходом АТФ. Для сравнения, на совершение мышечной работы уходит всего около 20 % вырабатываемой организмом энергии, а все остальное ее количество – это «энергия тепла». Поэтому чтобы, например, согрет
Просмотров: 560 | Добавил: wilegladut | Рейтинг: 0.0/0
Всего комментариев: 0
Поиск

Календарь
«  Январь 2014  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Архив записей

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2024
    Конструктор сайтов - uCoz